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1.0 INTRODUCTION

The report is organized into sections representing the phases of work performed in analyzing the
STS 65 results and preparing the instrument for STS 73. Section 1 briefly outlines the OARE
system features, coordinates, and measurement parameters. Section 2 describes the results from
STS 65. The mission description, data calibration, and representative data obtained on STS 65 are
presented. Also, the anomalous performance of OARE on STS 65 is discussed. Finally Section 3
presents a discussion of accuracy achieved and achievable with OARE.

1.1 OARE System Features

The Orbital Acceleration Research Experiment (OARE) contains a tri-axial accelerometer which
uses a single free-floating (non-pendulous) electrostatically suspended cylindrical proofmass. The
accelerometer sensor assembly is mounted to a microprocessor-controlled, dual-gimbal platform in
order to perform in-flight calibrations. Acceleration measurements are processed and stored in the
OARE flight computer memory and, simultaneously, the unprocessed data are recorded on the
shuttle payload tape recorder. The payload tape recorder data are telemetered periodically to
ground stations during flight via tape recorder playback (data dumps).

OARE's objectives are to measure quasi-steady accelerations, to make high resolution low-
frequency acceleration measurements in support of the micro-gravity community, and to measure
Orbiter aerodynamic performance on orbit and during reentry. There are several features which
make the OARE desirable for making highly accurate, low-frequency acceleration measurements.
OARE is the first high resolution, high accuracy accelerometer flight design which has the
capability to perform both bias and scale factor calibrations in orbit. Another design feature is the
OARE sensor electrostatic suspension which has much less bias temperature sensitivity than
pendulous accelerometers. Given the nature of the OARE sensor and its in-flight calibration
capability, OARE stands alone in its ability to characterize the low-frequency environment of the
Orbiter with less than 10 nano-g resolution and comparable accuracy.

1.2 Coordinate Systems

Two coordinate systems are used in this report — the OARE axes centered at the OARE sensor
proofmass centroid and the Orbiter aircraft body axes centered at the Orbiter's center of gravity.
The direction from tail to nose of the orbiter is +X in both systems. The direction from port wing
to starboard wing is +Z in the OARE system and +Y in the Orbiter system. The direction from the
Orbiter belly to the top of the Orbiter fuselage is +Y in the OARE system and -Z in the Orbiter
system. This sensor-to-body coordinate alignment is referred to as the nominal flight alignment
and was utilized for OARE data collection during STS 65.

In discussions of OARE calibrations of bias and scale factor, the OARE reference system is used.
Flight acceleration data are given in the Orbiter body reference system. The sign convention is
such that when there is a forward acceleration of the Orbiter (such as the OMS firing), then this is
reported as a positive X axis acceleration. All accelerations given in this report refer to the OARE
location.



1.3 Sensor Measurement Parameters

There are three sensor ranges A, B, and C for each OARE axis, which are controlled by auto-
ranging software logic. The full scale ranges and resolutions (corresponding to one count) are
given in Table 1. In any case where the sensor channel is driven into saturation, the output is set to

1.5 times full scale of range A with the sign of the saturation signal included.

Table 1. OARE Sensor Ranges and Resolutions

Full Scale Range in micro-gs
Range X-Axis Y & Z Axes
A 10,000 25,000
B 1,000 1,970
C 100 150
Resolution in nano-gs
Range X-Axis Y & Z Axes
A 305 763
B 30.5 58.0
C 3.05 4.6

2.0 STS 65 MISSION RESULTS

This section describes the results from STS 65 as derived from post-flight analyses of the on-board
stored EPROM processed data and from the telemetered unprocessed data.

2.1 STS 65 Mission Plan

The STS 65 adaptation parameters anticipated a mission of up to 14 days long. The calibration
plan was to perform bias calibrations at 251 minute intervals and to perform scale factor
calibrations in conjunction with every third bias calibration. The STS 65 plan did not include any
predefined "Quiet” periods in that "around the clock” astronaut operations were planned.

2.2 STS 65 Actual Mission Description

Launch for STS 65 was on 8 July 1994. The actual length of the OARE STS 65 mission was 14
days, 17 bours, 56 minutes, and 9 seconds. Shutdown occurred in REENTER mode under the
condition of "re-capture duration error” in sub-mode 4. This means that the OARE instrument
continued to collect data until the Y axis signal was saturated for at least 2 minutes in the final
REENTER sub-mode. This is considered normal termination of the mission, and represents
adequate adaptation parameter settings for the reenter file size and correct timing of the reenter
discrete.

The OARE was turned on once, 3:50 (hh:mm) prior to launch. Quiet was asserted "ON" during
day # 13 (the first day of the mission is day # 0) for 2 closely spaced periods of about 3 hrs. each.
Reenter was asserted then canceled twice during day #13 then asserted for actual reentry on day
#14. The system remained in Reentry for 71:18 (mm:ss) before a normal shutdown due to sensor




saturation. The EZPROM flight data were recovered by accessing the OARE SPCS on Orbiter
OV-102 via the GSE on 5 August 1994.

All engineering parameter values were within normal range. Hardware performance was normal.

2.3 STS 65 Data Analysis

This section treats the several analyses carried out on the STS-65 flight data and summarizes the
significant results. The processed acceleration data and the EPROM files have already been
delivered to Microgravity Measurements and Analysis Branch at NASA Lewis Research Center.

The Orbital Acceleration Research Experiment (OARE) is designed to measure quasi-steady
accelerations from below 10 nano-g up to 25 milli-g where quasi-steady indicates the frequency
range from DC to 1 Hz. To accomplish this, the sensor output acceleration signal is filtered with
a Bessel filter with a cut-off frequency of 1 Hz. The output signal is digitized at 10 samples per
second and is then further processed and digitally filtered onboard the OARE instrument with an
adaptive trimmean filter prior to EPROM storage.

In flight, the OARE instrument is subjected to higher amplitude and higher frequency accelerations
(such as structural and crew noise effects) in addition to the quasi-steady accelerations such as
those due to gravity gradient and on-orbit drag. However, these higher accelerations are not well
characterized nor statistically invariant over the OARE measurement periods. Because of limited
OARE flight memory, the sampled data of 10 samples per second is further processed to estimate
the quasi-steady acceleration over sample periods of 50 seconds.

In order to obtain the optimum estimate of the quasi-steady acceleration under these conditions, a
robust adaptive estimator has been implemented. Fora discussion of robust estimators see
Reference 1. The particular estimator used is known as the Hogg Adaptive Trimmean estimator
and is described in Reference 2. In essence, the adaptive trimmean estimator examines the
distribution of the measurement points over a given period (typically 50 seconds on STS 65) and
determines the size of the tails of the distribution (or its departure from a normal distribution).
Based upon its measurement of the size of the tails of the distribution, it adaptively chooses the size
of the trim to be used for estimating the mean of the underlying population. The larger the
percentage of the distribution in the tails, the larger the trim that is used in estimating the mean.
For OARE on-orbit processing, the trimming ranges from 10% to 80% of the total distribution as
discussed in Reference 2.

The data analyzed and presented in this report is primarily that which was recorded on-board and
has been processed by the on-board trimmean filter in 50 second periods. The telemetry data at 10
samples per second which has not been processed by the trimmean filter as well as the acceleration
data presented in this report are available from the Microgravity Measurements and Analysis
Branch at NASA Lewis Rescarch Center.

The temperature environment was cold for most of the STS 65 mission but was relatively constant
from mission elapsed time (MET) of 50 hours through MET of 300 hours. The instrument
temperature in degrees Celsius (measured on the proofmass housing) is shown in Figure 1.
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Figure 1. STS 65 Instrument Temperature Measured During X-Axis Bias Calibrations
2.3.1 Bias Data Analysis

One determinate of the overall accuracy of the acceleration measurement data is the accuracy of
the bias determination of the OARE instrument as a function of time during the mission. On STS
65, bias calibrations were made 5.7 times a day.

In the process of measuring the bias for each sensor axis, the OARE sensor is held in its standard
position and 50 seconds of data are collected at 10 samples per second. These data are then
processed through the trimmean filter which calculates a "best” estimate of the DC signal by
removing the outlying data points which may be caused by various higher frequency activity such

as crew activity, thruster, evaporators, pumps, vibrations, etc.; then the mean and the average

then rotated 180 degrees and a new set of measurements is made and processed by the trimmean
filter. The outputs are then summed and divided by two to obtain the measured estimate of the true
bias in counts for that bias calibration event.

In order to obtain the most accurate measurement of the instrument bias, there should be no noise
or offset contributions to the measurement of the means except the intrinsic instrument noise and
DC accelerations. However, the shuttle activity's contribution to the noise exceeds the intrinsic
noise of the instrument and any changes in the average acceleration between the two bias
measurements will contribute to an error in the measured bias. Thus, there may be a significant
measurement error on each bias measurement. These measurement errors inherently limit the
accuracy obtainable from the bias calibration process.

The bias can be characterized by an initial transient after launch as a function of time and a small
dependence upon temperature. In the same manner as on STS 62 [3], we have fitted the measured
bias data with a function of the following form:

Bias = A + Ap*e(U10) + Agve(tt]) 4 o e



where A}, Ag, A3, Ag, 10 and t] are fitted coefficients, t is the mission elapsed time in hours, and
T is the instrument temperature in degrees Celsius.

The true bias in counts was estimated by performing a Jeast squares fit to the trimmean bias
measurements. The functional form of the fit was the two exponential form with a linear
temperature term as given above. The results of these fits are shown in Figure 2 for the OARE X,
Y, and Z axes on the C-Range. The measured and fitted bias are shown and are to be read along
the left axis. The residual errors between the fitted bias and the measured bias are also shown and
can be read along the right axis. The conversion from counts to nano-gs is given as resolution in
Table 1. The fitted coefficients and corresponding metrics of the fits are shown in Table 2.
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The functional fit captures the trend of the bias measurements with no major deviations over long
periods of time, as shown in Figure 2; this would indicate that the functional form of the fit is
generally adequate. The differences between the fit or estimate of the true bias and the measured
bias are believed to be largely due to the inherent uncertainty in the measurement of the bias as a
result of the large noise generated as a result of crew activity and other exogenous events aboard
the shuttle. During quiet periods such as those on STS 62, the differences are generally much less
than those shown here.

Table 2. STS 65 Bias Fit Analysis (See Note Below)

OARE X-AXIS
RANGE C B A
FITTED CONSTANT Al -2247.4° -231.5 5.33
FITTED CONSTANT A2 -2942.6 -209.1 4.82
FITTED CONSTANT A3 904.0 100.4 6.95
FITTED CONSTANT A4 27.07 2.92 0.266
FITTED CONSTANT @ 5 §.75 5
FITTED CONSTANT t1 400 500 400
STANDARD DEVIATION OF FITTED-MEASURED 138.4 11.0 1.25
R-SQUARED OF FIT 0.777 0.861 0.865

OARE Y-AXIS
RANGE C B A
FITTED CONSTANT Al 47.3° 25.23 28.67
FITTED CONSTANT A2 451.6 47.0 -98.26
FITTED CONSTANT A3 108.8 5.08 -6.54
FITTED CONSTANT A4 -1.12 -0.732 -0.751
FITTED CONSTANT @ 9.3 6.8 1.5
FITTED CONSTANT t1 350 75 9.5
STANDARD DEVIATION OF FITTED-MEASURED 29.0 33 0.59
R-SQUARED OF FIT 0.992 0.879 0.995

OARE Z-AXIS
RANGE C B A
FITTED CONSTANT Al 1510.3* 232.78 173.62
FITTED CONSTANT A2 385.1 30.08 20.58
FITTED CONSTANT A3 -183.3 -15.86 -8.55
FITTED CONSTANT A4 4.89 -0.369 0.039
FITTED CONSTANT ©0 12.6 11.8 10.4
FITTED CONSTANT 1 130 220 46.8
STANDARD DEVIATION OF FITTED-MEASURED 22.0 2.7 0.88
R~SQUARED OF AT 0.843 0.664 0.708

*Note: For processing raw telemetry data, the fitted constants Al on the C range for the OARE X, Y, and
7 axes are -2241.7, 48.9, and 1511.8, respectively. See section 2.3 for discussion.

In the above analysis of bias, a visual examination of the 10 sample per second data time plots for
the bias measurements indicated that there was a large negative transient signal included in the YZ
opposite position bias signal measurements as a result of completing the table movement and not
allowing sufficient Y axis electronic settling times on the C-range bias calibration. Further
analysis indicated that this induced transient’s effect on the bias esgmate was not completely
removed by the tnmmean filter. In fact, it skewed the bias by 50+4 counts for the Y estimate and
6.5+1.5 counts for the Z estimate in the C-range. These corrections have been incorporated into
the bias measurements shown in Figure 2 and Table 2. The amount of skewing is dependent upon
the noise level. For missions such as STS62, where there are quiet periods, the bias measurement
offsets would be less.



2.3.2 Scale Factor Data Analysis
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The scale factor correction is SFC = SFp / SFy, where SFy is the nominal scale factor.

Scale factor corrections were calculated for all three OARE axes and the three ranges. The results
are shown in Table 3.

Table 3. Scale Factor Correction Factors for M65 OARE Axes and Ranges

AXIS RANGE VALUE
A 1.072
B 1.06
X c 1.025
A 1.158
1.164
Y C 1172
yA A 1.113
Z B 1128
YA C 1131°

*This Scale Factor Correction was computed from the B range measurement.
2.3.3 Orbiter Body Axis Accelerations Results

The accelerations measured by OARE at the OARE location in the Shuttle Body Axes coordinate
system ( X- toward nose, Y-toward the starboard wing, Z-down through the belly) are shown in
Figures 4-10 for representative time periods. Figures 4,5, and 6 show the acceleration during the
entire mission. Figure 7 shows the induced acceleration at the OARE location during Orbiter
maneuvers. Figures 8-10 show a period of a nominal noise level follwed by a more quiet period
pear the end of the mission.
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2.4 STS 65 Anomalous Performance

On STS 65 there were some anomalies which were in general minor in nature. Many of these had

been seen on previous missions and were not considered significant enough to fix at that time. The
following is a discussion of these anomalies.

OARE Z Axis Scale Factor Anomaly

OARE's performance on STS 65 was similar to that on STS 62. The Z-axis C range scale factor
calibration was still affected by jitter to a small degree. In addition, the OARE instrument in the
C-range continued to show the characteristics of an "electronic bias shift" that was first noted in
STS-58 [4]. The electronic bias shift manifested itself with small changes in the pre and post rate
levels during the scale factor calibration on the Z axis in the C-range. This electronic bias shift
was not apparent in the bias calibrations and appears to be an artifact that occurs only during the
scale factor calibration period and, hence, does not affect the Z-axis data collection.

Ground and In-Flight Scale Factor Differences on Y and Z axes.

The scale factor calibration measurements measured in-flight using the rotary table assembly were
nearly identical to those measured on STS-58 and STS-62 even though the temperature was
considerably colder. However, these in-flight scale factors appeared to differ from the ground
calibration factors by approximately 14% on the Y and Z axes and by about 3% on the X axis.
This difference between in-flight measured scale factors and ground calibration factors is now

ing analyzed and has been shown to be a test effect related to additional cable capacitance in test
cables used in the ground calibrations; ie. when the erroneous ground test capacitance was
removed, the ground measured scale factors match the flight scale factors to within about 2%.
These scale factor analyses will be reported upon in a separate report.

Small Error in the On-board TrimMean Filter

In reviewing the processing algorithm for the bias calibration it was discovered that the flight
software routine which does the trimmean calculation has a small error. It removes one more
point on the high end of the distribution than on the low end of the distribution. This results
in shifting the mean to a lower value than it should be. Estimated errors are 5.7+0.3 counts on
the X-axis, 1.6+0.1 counts on the Y-axis, and 1.5+0.1 count on the Z-axis. Since the flight
software also processes the normal acceleration data by using the same algorithm, this error
was self-correcting in the processing of the normal data from the EPROM shown in this report.
However, these corrections should be applied to the bias functions shown in Table 2 for the C
range when processing the raw telemetry data; i.e., the fitted constants Al should be increased
by 5.7 counts for the X-axis C range, by 1.6 for the Y-axis C range, and by 1.5 for the Z-axis
C range.

Erroneous Reporting of Sensor Range following Scale Factor Abort
All Normal data files reported that each sensor channel was in range C following the second
canceling of Reenter but data values indicated that all channels must have been in range A. This

condition was not corrected until a condition occurred that caused automatic ranging; in this case,
an external event that caused X axis saturation 2 hours later. The Normal data for this time period
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was recovered by manual editing of the range codes in the ASCII formatted data files used for
analysis. The correct range was then processed for the flight accelerations delivered.

The Status Log shows that this Reenter was canceled while Scale Factor was in the Rate step of
Sequence #4. Normal ranging control is overridden by Scale Factor control during the Rate step.
Range C was active for all sensor channels prior to start of Scale Factor and range A is
commanded, by Scale Factor control, while the table is starting or stopping its Rate movement. It
appears that the software action to abort Scale Factor activity at this critical time is inadequate.
Although the general action of aborting a Scale Factor was previously tested, the abort probably
was not stimulated in the narrow time window that would stimulate this defect,

Defective Scale Factor Data Record, with Loss of Scale Factor Data

Ground support software which reformats the SF_RAW data file for analysis declared a
formatting error in the raw data file during processing of SF number 27, which is the one aborted
when the first Reentry was canceled. [The processing software quits processing the raw data file
when it encounters an error.] While this raw data file data formatting error has not been
investigated in detail, it is suspected of being another deficiency associated with early termination
of Scale Factor stimulated by the canceling of Reenter. We are optimistic that future corrective

action for the Erroneous Reporting of Sensor Range problem will prevent future occurrences of
this problem as well.

The effect of this defect is that Scale Factors during the last day of the mission have not been
included in the correction of Normal data for this mission. This is not considered important for
analysis in support of corrected Normal data measurements for the main portion of the mission.
The raw data for the last Scale Factor of the mission exists in the Reenter data file and all Scale
Factors are in the recorder output telemetry data. No plans presently exist to refine the ground
processing software to recover M65 Scale Factor data following the point of defect or to
investigate the exact nature of the raw data file defect.

3.0 OARE ACCURACY ANALYSIS

The OARE instrument provides high resolution measurements of sensor input axes
accelerations, 3.05 nano-gs in the OARE X axis and 4.6 nano-gs for the Y and Z axes. The
accuracy of these measurements is primarily determined by the degree to which the instrument
can be calibrated over the time period of the measurements. Major sources of potential errors
are the accuracies obtainable from the bias and scale factor calibrations.

3.1 Bias Errors

On STS 65, the bias was measured 84 times. From these measurements, the true bias was
estimated by the fitting procedure discussed in section 2.3.1. Potential errors in these bias
estimates arise from the statistical nature of the bias measurements as well as from potential
systematic errors which have not been identified.

Random fluctuations in the recorded signal due to instrument noise or crew activity, etc., cause
statistical errors in the individual bias measurements. In order to determine whether the
differences between the bias estimates based upon fitted data and the actual measurements were
consistent with the statistical errors that could be expected, a measure of the expected
measurement errors was calculated. This measure consisted of the calculated average and the
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RMS of the series of (S(t+75)-S(t))/2 for all times between mission elapsed times of 30 and 90
hours where S(t) is the measured signal counts after the trimmean filter for a period of 500
samples (50 seconds). This corresponded to more than 8000 measured differences over a
nominal period as can be seen in the acceleration plots. In this case, t is in seconds and 75
seconds is approximately the time between the bias measurements at the two table positions
used to calculate the bias. The average of this series should be close to zero since there is no
significant change in the average acceleration level over time. The RMS of this series is a
measure of the expected measurement error in the bias measurements since the same signals,
signal processing, and timing are used in the bias calculations. A comparison of the RMS of
the signal differences and the RMS of the differences between the bias measurements and fit
are shown in Table 4.

Table 4. Comparison of RMS of Signal Differences and RMS of Bias Fit Differences.

OARE AXIS AND | RMS of Signal RMS of Bias Fit RMS of Fit in nano-
RANGE Differences Differences* __gs*
X-C 94 138 (123) 421 (375)
Y-C 37 45 (29) 206 (133)
Z-C 29 26 (22) 119 (101)

*The number in parentheses is if the outlier points (from 1 to 3) are removed.

The magnitude of the RMS (standard deviation) of the signal differences and the bias fit
differences are the same. The data are therefore consistent with the hypothesis that the
differences between the bias fits and the bias measurements are due to the statistical noise
associated with the bias measurements. This noise is primarily a result of crew activity and
other exogenous events occuring when the bias measurements were made.

Additional support of this hypothesis can be found in the STS 62 data [3]. On STS 62 there
were 71 total bias calibrations of which 27 occurred at relatively quiet periods. Biases were
estimated on STS 62 in the same manner as on STS 65. Statistical measures of the bias fits on
STS 62 are presented in Table S. RMS values are presented for both all of the bias
measurements and for only the 27 bias measurements made during the quiet periods. The same
fit was used for the total data set.

Table 5. Statistical Measures of Bias Fits on STS 62 (71 total bias measurements, 27 Quiet)

OARE Axis and | RMS of Bias Fit RMS of All RMS of Bias Fit | RMS of Quiet
Range Differences Differences in Differences Differences in
(All) (counts) nano-gs (Quiet) (counts) nano-gs
X-C 60 185 19 60
Y-C 50 230 15 69
Z-C 30 138 15 69

As can be seen in Table 5, when the crew ceases activity during the quiet periods (on STS62
both crews had common sleep periods), the differences between the bias measurements and the
estimated biases are considerably reduced. Again, this result is consistent with the hypothesis
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that the differences between the bias fit and the measured values are due to noise induced by
on-board shuttle activity.

Although the individual bias measurements differ significantly from the bias estimates, these
differences are explained by the expected measurement error. Based upon statistics alone, we
estimate that the error on our bias estimate is the RMS of the (bias measurements minus the
bias estimate) divided by the square root of the number of degrees of freedom. There are 78
degrees of freedom on STS 65 bias fits and 21 on the quiet measurements on STS 62. Table 6
shows the resulting estimated statistical errors on the bias estimator.

Table 6. Estimated Statistical Bias Errors on STS 62 and STS 65

OARE Axis and Range STS 65 Error (nano-g) STS 62 Error (nano-
X-C 48 14
YC 24 15
Z-C 14 15

Non-random systematic errors are difficult to estimate, but are estimated to be about 20 nano-
gs. The systematic errors and random errors should be added in quadrature to get the final
estimate of the error on the bias. Thus, we expect bias errors of about 55 and 35 nano-gs for
the X and Y/Z axes, respectively, on Doisy missions such as STS 65. On STS 62 where there
are quiet periods for calibrations, we expect bias errors to be on the order of 20-30 nano-gs.

This estimate of errors is consistent with the error estimate of 40 nano-gs provided by
Blanchard et al. on page 18 of reference 4.

3.2 Scale Factor Errors

In the microgravity environment of the Orbiter, the quasi-steady acceleration measurements are
typically on the order of 1 micro-g or less. Under these conditions, the bias errors are larger
than the scale factor errors.

Measurements of the scale factors made during flight and those on the ground are now
consistent to within 1-2 percent. We estimate the scale factor errors to be about 1-2 percent of
the measured acceleration. These can be reduced with further study. At a 1 micro-g level, this
corresponds to 2 10-20 nano-g error. These should be added in quadrature with the bias
erTors.

3.3 Quasi-Steady Acceleration Measurements

As indicated, the primary OARE data recorded on the flight computer is processed through an
adaptive trimmean filter. This trimmean filter provides a near optimum estimate of the mean
of the quasi-steady acceleration population of Mmeasurements ovet the 50 second sampling
period. This estimate is particularly beneficial in the calculation of the bias estimate and the
estimate of orbital drag and gravity gradient effects. However, it tends to reject the effects of
crew activity, thruster firings, and other €xogenous events. Because many experimenters are
interested in the true average of the acceleration measurements over the 50 second sample
period, we are now considering incorporating the true average as well as the trimmean average
for the sampling periods into the data recorded on the flight computer . In any case, the true
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average can be recovered from the telemetry data on STS 65 for those periods where it exists.
For STS 73, the telemetry data will be available for all periods when OARE is operating.
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